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FOREWORD

This report was prepared by ManLabs, Inc, under USAF Contract No,
AF33(616)=6354, This contract was initiated under Project No, 7312, "Fina
ishes and Materials Preservation', Task No. 731201, '"Surface Treatments
and Coatings', The work was administered under the direction of the Di=-
rectorate of Materials and Processes, Deputy Commander/Technology,
Aeronautical Systems Division, with Mr, N, M. Geyer acting as project

engineer,

This report covers work conducted from May 1960 to March 1962,

The authors wish to acknowledge the assistance of Sim Adler, Joseph Davis,

and (Miss) Irita Vilks during the course of the program,

2-31C, 500, 8-31-62
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ABSTRACT

Thirty-three base barrier combinations involving the four refractory
metals: W, Mo, Ta, Cb; and 12 potential barrier metals having melting points
over 1700 C were evaluated for relative interdiffusion behavior at 1700°C.
Further evaluation of promising W and Ta-base combinatiorns was carried out
at 1800°C. In general, the relative extent of interdiffusion decreases with in-
creasing base-barrier sohdus temperature, although wide variations occur for
melting points up.to 2100°C. Alloying of Mo and Cb base metals was found to

.have no significant effect on interdiffusion with Re. Interdiffusion in the Mo-Cr

combination was found to be substantially reduced by the presence of a Re bar-
rier.

The base-barrier interdiffusion studies were supplemented by considera-
tion of such factors as alloy melting point and barrier-coating interdiffusicn in
selecting optimum barrier metals for each base metal. As a result, Re, Ru, and
Ir barriers appear optimum for W base metal; W, Re, Ru, and Ir appear optimum
for Ta; and W, Re, Os, and Zr appear optimum for Cb.

The thickness (X) of the total interdiffusion zone as well as of the inter-
mediate phase layers in the W-Re, Mo-Re, Ta-Re, and Cb-Re combinations was
found to increase with time (t) in accordance with X? = kt, with values of n in
the range 1.4 to 4.9. Approximate over-all 1nterd1ffus:1on coefficients, Dg, of
3.4 x 10'6. 9.0 x 10'5, 1.9 x 10-8, and 5.1 x 10-8 2/sec were found for the
W-Re, Mo-Re, Ta-Re, and Cb-Re combinations, respectively.

This report has been reviewed and is approved.

C9 - M

I. Perlmutter

Chief, Physical Metallurgy Branch

Metals and Ceramics Laboratory

Directorate of Materials and
Processes
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I. INTRODUCTION
A, The Diffusion Barrier Concept

In order to use the major refractory metals (W, Mo, Ta, and Cb)
at high temperatures, it is necessary to protect them with an oxidation re-
sistant coating. However, interdiffusion between the coating and the re=-
fractory base metal may bring about the deterioration of the properties of
both (due to the resultant alloying).

The performance of surface coatings may be enhanced if an intermediate
metallic layer is placed between the coating and the base. The principal require=-
ment of this layer is for it to act as a barrier to diffusion. Thus, the rate of
interdiffusion between this barrier and the base metal should be much less than
that between the oxidation resistant coating and base metal, Furthermore, only
a limited amount of interdiffusion should take place between the coating and the
barrier, although the barrier itself need not be highly oxidation resistant.

This report primarily deals with a study of interactions between potential
barrier metals and W, Mo, Ta and Cb base metals, Interactions between
barrier metals and oxidation resistant metals were also studied in order to
evaluate more fully the relative efficacy of the various barrier metals, The
report covers the continuation of work performed from May 1959 to May 1960
on the same contract{l) and was carried out from May 1960 to March 1962,

B. Previous Work

During the first year, 24 base-barrier metal combinations were evalu-
ated by studying the extent of interdiffusion after holding one hour at 1700°C,
Measurements of interdiffusion were made by microscopy, microhardness
measurements, and electron micro-beam analysis, Based on these measure-
ments, it was tentatively concluded that Hf was the most promising barrier
for W, with Ir and V as alternate choices. Ir appeared to be the best choice
for Ta and Mo. No recommendations were made for Cb because of melting of
Cb-base combinations at 1700°C.

No correlation was found between interdiffusion behavior and the extent of
solid solubility or the presence of intermediate phases in base-barrier systems,
The extent of interdiffusion appeared to decrease as the melting points of bar-
rier and base increased; however, there were several exceptions,

C. Selection of Potential Barrier Metals

Originally, 11 barrier metals with melting points above 1700°C were
selected as potential barriers for each of the four base metals. The resulting
44 combinations are included in the first column of Table 1. Of these, the
following were 1n1t1a11y excluded because of extensive solid solub1l1ty. W Cr(z)
Ta-Re(3 % Ta-V(4), Mo=Re(5), Mo-V(6), Mo-Pt(7), Cb-Re(8:9,10) "Cb- Ru(ll)
Cb-Hi(1 2) Cb-v(13) and Cb- Zr(14) However, the results of the first year's
program 1nd1cated that the melting point of the barrier may be a more
important factor than base -barrier solid solubility in affecting the extent

Manuscript released by authors May 1962 for publication as an ASD Technical
Documentary Report,
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Table 1

Selection of Potential Base~Barrier Combinations

Minimum Selected
All Solidus for
Combi.nations Temgerature Prgviously Evaluatied Furthe-:r
Considered C (Partially or Completely) Evaluation
W-Re 282519 W-Re W-Re
W-Os 2725(16) W-0s
W-~Ta see Ta-W
W -Ru 2205(19) W-Ru W-~Ru
W-Ir 2420(17) W-Ir W-Ir
W -Hf 1930(1© W -Hf W -Hf
W-Rh 1830{17) W-Ru W-Rh
wW-V 1630(6) wW-Vv W-V
W-Cr 1890(%) W-Cr
W-zr 1650(7 W-Zr
W-Pt 1769(13) W-Pt
W-Th 147513 W-Th
Mo-W 2625(13) Mo-W
Mo-~-Re 2300(5) Mo-Re
Mo-Os 2360(17) Mo=-Os
Mo-Ta 2625(13) Mo-Ta
Mo-Ru 1945(18) Mo-Ru
Mo-Ir N. A. Mo-1Ir Mo-Ir
Mo-Hf 1915(7 Mo-Hf Mo-Hf
Mo-Rh 1930(19) Mo-Rh Mo-Rh
Mo-V N.A. Mo-V
Mo-Cr 1860(7) Mo-~Cr Mo-Cr
Mo-Zr 1520(7 Mo-Zr
Mo-Pt 17697
Mo-Th N.A, Mo-Th




Table 1 (Continued)

Selection of Potential Base-Barrier Combinations

All
Combinations
Considered

Ta-W
Ta-Re
Ta-Os
Ta-Ru
Ta-Ir
Ta-Hf
Ta-Rh
Ta-V
Ta-Cr
Ta~Zr
Ta-Pt
Ta-Th

Cb-W
Cb~Re
Cb-Os
Cb-Ta
Cb-Mo
Cb-Ru
Cb-Ir
Cb-Hf
Cb-Rh
Cb-V
Cb-Cr
Cb-Zr
Ch-Pt
Cb~Th

Minimum Selected
Solidus for
Temgerature Previously Evaluated Further
C (Partially or Completely) Evaluation
(14) Ta-W
26903 Ta-Re
2360(19 Ta-Os
1970(20) Ta-Ru
2250{17) Ta-Ir Ta-Ir
2100{7 Ta-Hf
168017 Ta-Rh
1830(%) Ta-V
1700(? Ta-Cr
1585(7) Ta-Zr Ta-Zr
N. A. Ta-Pt
N. A.
246014 Cb-W
2400(8+9,10) Cb-Re
N. A, Cb-~Os
246014 Cb-Ta
23507 Cb-Mo
N. A, Cb~Ru
N. A. Cb-Ir
N.A. Cb-Hf
N.A. Cb-Rh
1810(13) Cb-V
166021
1750(14) Cb-Zr
N.A. Cb-Pt
1435(13) Cb-Th




of interdiffusion. Conseguently, the originally excluded combinations having high
melting point barriers were included in the current program,

One group of potential barrier metals not originally considered are the
major refractory base metals themselves, e.g.,, a W barrier on Ta, Mo, or
Cb base metal. In spite of extensive solid solubility, these metals are considered
as potential barriers because of their high melting points, and are also included
in the first column of Table 1,

Some of the combinations originally considered have been excluded from
the current program because of low melting points, Ta-Th, Mo-Pt, and Cb-Cr
fall into this category.

The last column in Table 1 consists of the 35 combinations selected for
evaluation on the current program. Twelve of these are combinations which were
partially evaluated during the previous year, and for which the results were not
conclusive. The remaining 23 combinations are new ones, not previously evalu=-
ated. They include the 11 combinations previously rejected because of extensive
solid solubility, the 6 combinations involving W, Mo, and Ta as barriers, and
6 other combinations which were not previously evaluated because of experimental
difficulties.

D. Scope of the Investigation

It was planned to evaluate the 35 potential combinations selected for study
by determining the relative extents of interdiffusion after standard diffusion-an-
nealing treatments. From the combinations evaluated, one, or possibly a few,
optimum barrier metals were to be chosen for further study. This would involve
such areas as: the effect of alloying of the base metal on base-barrier interdif-
fusion, interdiffusion in barrier-coating combinations, and quantitative interdif-
fusion studies. The diffusion barrier concept itself was to be evaluated by the
investigation of interdiffusion in three-layer, base-barrier-coating systems,




II. EXPERIMENTAL PROCEDURE

A, Materials

The suppliers, forms and estimated purities of the metals used in the
current program are listed in Table 2,

B. Preparation of Couples

Pressure welding was used to prepare most of the couples studied in the
evaluation tests. Essentially, the technique was similar to that developed during
the preceding program, The specimens were polished on both faces, cleaned,
and placed inside a cylindrical Mo-0,5 Ti alloy clamp (Fig. 1). The chamber
of the clamp was lined with Ta foil before the specimens were inserted. After
the specimens were in place, the excess foil was folded over them, The threaded
plugs were then tightened securely, thus exerting a compressive force on the dif-
fusion couples,

The entire clamp was wrapped in Ta foil and the whole assembly was
vacuum-~annealed for one hour at a temperature in the range 750° to 1100°C, On
cooling to room temperature, the plugs were re-tightened and the ciamp wrapped
in fresh Ta foil. The clamp~specimen assembly was then placed inside a mull-
ite tube (Fig. 1), and the tube was flushed with argon for several hours, The
clamp was then induction-heated to the diffusion-annealing temperature and held
at plus or minus 10°C by means of an automatic on-off-type timer switch. The
temperature was measured by means of a Pyrometer Instrument Co. Micro~
Optical Pyrometer, sighted on the bottom of a deep hole, The ratio of length to
diameter of the hole was high enough (more than 5 to 1) to ensure black-body
conditions. The optical pyrometer was calibrated against a tungsten ribbon fila=
ment lamp with a quartz sighting window, The lamp was purchased from General
Electric and calibrated by the National Bureau of Standards.

For the quantitative interdiffusion studies, the experimental procedures
were essentially those previously described for the evaluation experiments. How-
ever, some changes were made in order to make the results more quantitatively
reliable. All the materials used were first recrystallization-annealed for one
hour at 1900°C in order to stabilize the grain structure. After assembly of the
metal wafers into the Mo clamp, they were vacuum -annealed for one hour at
1100°C in order to align the wafers in the clamp and to achieve some preliminary
degree of pressure welding. However, an experiment in which one series of
diffusion couples was retightened after the 1100° treatment (the usual procedure)
and an identical series was heated directly to the diffusion-annealing temperature
of 1900° without retightening showed that the degree of welding during the prior
1100° treatment was not sufficient to hold the couples together during subsequent
diffusion-annealing. Consequently, all other diffusion couples were pressure
welded and diffusion-annealed simultaneously at 1900°C. The effect of the pres-
sure applied by the difference in thermal expansion between the Mo clamp and
the metals composing the diffusion couples on the measured rates is believed to
be insignificant,




Ir

Cb

Rh

Cr

As-Received
Form

0.030 in. strip
0.020 in. strip
arc melted buttons
0.030 in. strip
0.030 in. strip
arc melted button
0.020 in. strip
0.030 in. strip

crystal bar
0.020 in. strip

0.030 in. strip
1/8 in. flake

0.035 in. strip

%
“Remainder mostly Zr.

Table 2

Materials

Supplier

Fansteel Metallurgical
Chase Brass and Copper
Engelhard Industries
Fansteel Metallurgical
Fansteel Metallurgical
Engelhard Industries
Engelhard Industries
Fansteel Metallurgical

Foote Mineral
Engelhard Industries

A. D. Mackay
Union Carbide

A. D. Mackay

£33
Remainder mostly Fe, Zn, and Ni.

Estimated
Purity, %

99.9
99.98
99.8
99.9
99.9
99.8
99.8
99.8

97. 7*
99.8

99.7
99.0"
99.8

£
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Because of the long annealing times, additional care was taken to mini-
mize contamination, The argon used as a protective atmosphere was first
passed through Drierite (anhydrous calcium sulfate) to remove water vapor
and then over hot Ta foil to remove interstitial impurities from the gas be-
fore it reached the Mo clamp. The argon was allowed to flow through the
mullite tube for several hours (usually overnight) before the annealing
treatment in order to flush out all traces of air. A Ta foil wrapping around
the diffusion couples inside the clamp was used (as in the evaluation tests)
to remove any impurities that might remain,

C. Evaluation of Couples

As in the previous program, diffusion couples were evaluated by metal-
lography and by microindentation (microhardness) measurements.

i. Metallography — Pressure welds were removed from the Mo clamp
and then mounted in plastic. Epoxy resin was used initially, but a lucite mount
with a harder layer of bakelite at the surface to be polished was found to be better.
Specimens were then ground to a depth approximately 1/3 to 1/2 the specimen diam-
eter on the surface normal to the diffusion interfaces and rough polished with
6-micron diamond dust on a silk lap. They were then polished with Linde B in
5% chromic acid on a soft wool (Forstmann Style No, 18019/1) lap at 400 rpm and
finish polished with Linde B on Buehler Microcloth at 200 rpm. Etching solutions
and procedures are presented in Table 3. Bright field illumination was generally
used for microscopic examination, For couples involving Re polarized light
also proved useful to a limited extent.

Intermediate phase layer widths were measured at a single point at
the interface in most of the evaluation tests at 1700°C, In each couple a point was
chosen where the layer showed the maximum uniform thickness. Layer widths
measured in this way were reported to the nearest micron {(e.g., 5, 6, or 7).

Average intermediate phase layer widths were reported to the
nearest tenth~-micron (e.g., 6.0, 6.1 or 6.,2) for some of the tests at 1700° and
all of those at 1800° and 1900°C, In these measurements, the section of the
interface which showed the maximum uniform penetration in a particular couple
was selected and an approximate estimate of its length (B_ ,,) was made. Brax
was usually in the range of several hundred to several thousand microns. Then, =
an estimate of the uniformity and total width (w) of the phase layer was made in
order to decide on the number of measurements (N) and their spacing (b).

N and b were kept below the limit at which B =(N-1)b = B ;.. Usually 20
measurements were made at a spacing (b) somewhat greater than the layer width
(b>w). However, as many as 30 measurements were made if the layer was non-
uniform and less than 10 microns wide, or as few as 10 measurements were made
if the layer was quite uniform and more than 20 microns wide,

2, Microhardness Measurements — Previous measurements had been
made by using a 25 gram load and a Vickers (diamond pyramid) indenter. The in-
dentation diagonals were converted to hardness values, which were then plotted as
a function of distance from the base-~barrier interface,




Table 3

Etching Procedures for Diffusion Couples

Method of

Combinations Etching Solution Application

Ta-W 10 g. K3Fe(CN) 10 g. KOH, 100 cc H, O immersion

Mo-W (Murakdmi's reagent)

Cb-W

wW-V

Mo-V

Mo-Ta

Cb-Mo

Ta-V 30 cc lactic acid, 10 cc HNO3, 1-10 cc HF swabbing

Cb-V

Ta-Re

Cb-Re

Cb-Ta

W-Rh concentrated HC1, followed by immersion electrolytic, 6v, d=c

Mo~-Rh in Murakami's reagent carbon cathode

W-Re 10% oxalic acid electrolytic, 6v, d~c

Mo-Re carbon cathode

W-Cr

Mo-Cr

W-Os 10% HC1 in ethyl alcohol, followed by electrolytic, 10v, d-c

Mo-0Os immersion in Murakami's reagent carbon cathode

Ta-Os 10% HC1 in ethyl alcohol, followed by electrolytic,10v, d-c

Cb-Os swabbing with 30 cc lactic acid, 10 cc carbon cathode

HNO3, 5-10 cc HF
W-Ru 20% HCl in H O, saturated with NaCl, electrolytic, 10v, a-c
W-Ir followed by 1mrners1on in Murakami's carbon cathode
reagent

Ta~-Ru 20% HC1 in H,O, saturated with NaCl, electrolytic, 10v, a-c

Cb-Ru followed by swabbing with 30 cc lactic carbon cathode

Ta-Ir acid, 10 cc HNO3, 5-10 cc HF

Cb-~Ir

W-Hf 30 cc lactic acid, 10 cc HNO3, 0.1-0.5 swabbing

Ta-Hf cc HF

Mo-Hf

Cb-Hf

Cb-2r




In the current program, measurements were made by using a 100
gram load and a Knoop indenter. The indentations were carefully placed in paral-
lel rows, with additional indentations made near the interface (Fig. 2) in order to
resolve the rapid change in hardness with distance in this region, The length of
the indentation was plotted as a function of distance from the interface in order to
assess the extent of interdiffusion. In preparing specimens for testing, care was
taken to ensure that disturbed (work-hardened) metal was removed from the sur=-
face and that no appreciable difference in level existed between the two metals
across the interface. Such differences were encountered if the metals composing
the diffusion couple differed substantially in hardness and resulted in fallacious
hardness minima (indentation length maxima) at the interfaces,.

Measurements were initially made using both the Vickers and Knoop
diamonds on the same couples, so that results could be compared with those ob~-
tained on the previous program. Approximately equal values of extents of inter-
diffusion were found to result from the use of both techniques. However, it is
believed that the long (narrow) Knoop indentation and heavier load employed gave
better resolution of the diffusion zone than was obtained with the pyramidal-
shaped Vickers indentation.

Hardness increments at the interfaces of the diffusion couples were
calculated by determining the difference between the maximum hardness at the
interface (or the hardness in the barrier metal, which ever was greater) and the
minimum hardness in the base metal (outside the diffusion zone),

~10 -
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III. RESULTS AND DISCUSSION

A, Evaluation of Base~-Barrier Combinations

1. Microstructures

Microstructures of the interdiffusion zones in typical diffusion
couples are shown in Figs, 3 to 51. Intermediate phase layers at the interfaces
were found in 19 of the 30 base~barrier combinations evaluated for interdiffusion
during the current program. In most cases, only one intermediate phase was
found at the interface; but in the W-Re, Ta-Os, Ta-Ir, Mo-Re, Mo-Ir,
Cb-Os, and Cb-Ir combinations, more than one was found, The largest num-
ber, 3, were present in the Ta~Ir and Cb=Ir combinations. In most combina=-
tions, the number of phases found at the interface agrees with the pu~lished
equilibrium phase diagram. However, in some cases, after the shorter annealing
time of one hour (at 1700°C), fewer phases were found than predicted., This ob-
servation can be attributed either to slow nucleation or to a very low growth
rate(22), In no cases were more phases found than reported in the equilibrium
diagram.

In a few combinations the solid solution regions in the inter-
diffusion zone could be clearly distinguished microscopically. In the W-Hf
(Fig. 7), Mo-Hf (Fig. 18), Ta-Hf (Fig. 26), and Cb-Hf (Fig. 32) combinations,
the extensive solid solution regions formed during diffusion-annealing were made
evident by the two-phase structures resulting from eutectoid reactions during
cooling,

As will be discussed further on, the relative extents of interdiffu-
sion indicated by the widths of the solid solution regions were useful in evaluating
some of those combinations where such regions were evident.

Porosity was formed in the interdiffusion zones of many of the com-
binations evaluated, especially in those exhibiting the most interaction. Such
porosity is usually attributed to the precipitation of vacancies resulting from the
unequal diffusion rates of the metals composing each diffusion couple, It occurs
in that region of the couple which is losing atoms , i.e., the side of the inter-
face occupied by the element which diffuses faster. Thus, in principle, the over-
all direction of mass flow can be inferred from the presence and location of the
porosity, The validity of this interpretation was confirmed by examination of
several couples at low magnification, At the edges of the couples, it was observed
that the intermediate phases formed on the side of the original interface opposite
the band of porosity, From such observations, the predominant direction of flow
was estimated in each combination and is listed in Table 4, This table also shows
that in combinations where both elements interdiffuse at approximately equal
rates, no porosity was formed, even though the over=-all rate of interdiffusion was
very fast, e.g., W-Cr (Fig. 9).

2. Relative Extents of Interdiffusion at 1700°C

Knoop indentation lengths are plotted against distance in a direction
normal to the interface for diffusion couples annealed at 1700°C in Fig. 3 to 51,
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Plots are shown for an annealing time of four hours in most cases, although data
are also presented for Mo-Re and Mo-Ir couples after one-hour anneals. The
Mo-Cr couple was annealed for one hour only,

The characteristic shape of the curves consisted of relatively con-
stant indentation lengths in both the base and the barrier metals outside the inter-
diffusion zone, in which there was usually a sharp minimum in the length, In
combinations with this type of length vs distance curve, it was possible to esti-
mate the approximate extent of interdiffusion by determining the distance between
the points at which the indentation length reached constant values in the base and
in the barrier respectively.

In some combinations, e.g., Mo-W (Fig. 11), Mo-V (Fig. 21),
Ta-Os (Fig., 23) and Cb-Zr (Fig. 33), no minimum in indentation length occurred;
but it was still possible to estimate the extent of interdiffusion because of a large
difference in hardness between the base and the barrier. In all these combinations,
the extents of interdiffusion so determined are listed in Table 4.

In most cases, the extent of interdiffusion estimated from the micro-
indentation tests was larger than that evident from the microstructural effects
observed. However, as discussed before, extensive solid solution regions were
observed in the W-Hf, Mo-Hf, Ta-Hf, and Cb-Hf combinations. In these
combinations, the extent of interdiffusion listed in Table 4 was based on micro-
indentation tests of the base metal side and on the microstructure of the Hf side
of each couple. This procedure gave a higher value than using microhardness or
microstructural determinations alone. Results shown in Table 4 for the Ta-Ru
(Fig. 24) and Mo=-0Os (not illustrated) combinations may be open to question be-
cause of cracks which apparently occurred at the interfaces after the diffusion-
annealing treatments.

As shown in Table 4, a wide range in the extent of interdiffusion due
to annealing at 1700°C occurred between the base-barrier combinations involving
Cr and Hf barrier metals and those involving W, Re, V, and some of the
higher melting point noble metals (Os, Ru, Ir, and Rh}). In a later section,
the interpretation of these interdiffusion measurements is covered from the stand-
point of selecting promising combinations for further study.

Values of hardness increments at.the interface and of maximum hard-~
ness (found at the interface) are also'given in Table 4., These parameters offer
some indication of the presence of hard (and presumably brittle) regions at the
interface, Brittle phases would be expected to inhibit good bonding of the barrier
to the base and lead to early failure of the coating system. Since many of base-
barrier combinations showing the least interdiffusion contain intermediate phases
along with both high interfacial hardness and hardness increment, it appears likely
that the occurrence of brittle constituents is to a large degree unavoidable in pro-
tective coating systems,

3. Selection of Promising Combinations for Further Study

Using such arbitrary criteria as 60 microns maximum extent of
interdiffusion for an anneal of four hours at 1700°C, 30 microns for an anneal of




one hour at 1700°C, and minimum base~barrier alloy melting points of 1900° for
W-base and 1850° for Ta-base combinations, 20 of the 33 combinations evaluated
were chosen as promising. The melting point criteria for W-base and Ta-base
combinations were chosen in view of the anticipated application temperatures.

An implied melting point criterion of 1700°C for Mo-base and Cb-base combi-
nations is evident,

In order of decreasing barrier melting points, the 20 combinations

are:
- Mo-W Ta-W Cb-W
W-Re Mo=-=Re Ta=Re Cb-Re
W-Os - Ta-Os Cb-Os
- Mo-Ta - Cb-Ta
- - - Cb-Mo
W-Ru - Ta-Ru -
W-Ir - Ta-Ir Cb-Ir
- Mo-V - -
- - - Cb-Zr

4. Effect of Alloying of the Base Metal on Mo-Re and Cb-Re
Base-Barrier Interdiffusion

As a typical promising barrier metal, Re was chosen for interdiffu-
sion studies using the following alloy base metals:

Alloy Designation Composition
Mo + 0.5 Ti Mo + 0,5 Ti
F48 Cb + 14W + 5 Mo + 1Zr
Fs82 Cb + 27Ta + 0.8Zr
D31 Cb + 10Ti + 10Mo

Results of evaluation experiments after subjecting these alloy base
metals to a diffusion-annealing treatment of four hours at 1700°C are summarized
in Table 4 and illustrated in Figs. 35 to 37. Comparison of the extent of inter-
diffusion in the Mo + 0,5 Ti alloy - Re couple with that in the Mo-Re one after
the same diffusion-annealing treatment indicates that the alloying may have de-
creased the interdiffusion somewhat, However, the limited amount of interdiffu-
sion in both couples and the fact that they were prepared in different pressure
welds do not permit an accurate comparison. The interdiffusion behaviors of the
three Cb alloy-Re combinations are not significantly different from that of
Cb-Re, as shown in Table 4. The extents of interdiffusion in all four combinations
are 50 microns or less,

5. Relative Extents of Interdiffusion in Promising W- and Ta-Base
Combinations at Higher Diffusion-Annealing Temperatures

Interdiffusion in some of the promising W«base and Ta-base com-
binations subjected to a diffusion-~anneal of three hours at 1800°C is illustrated in
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Figs., 38 to 45 and summarized in Table 5. As observed for the same combina~
tions after annealing at 1700°C, intermediate phases were found at all the inter-
faces except that of the Ta~W combination, W-Re (Fig. 38) and W-Ir (Fig. 41)
have two phases each, whereas Ta-Ir (Fig. 45) has three. The others (W-Os,
W-Ru, W-Rh, and Ta-Re) each have one intermediate phase, in agreement
with the published phase diagrams. The widths of the intermediate phase layers
are approximately the same after an annealing treatment of three hours at 1800°C
as were found after four hours at 17009, This indicates that the two time-
temperature combinations are sufficiently equivalent to apply the same criterion
regarding the maximum tolerable extent of interdiffusion (60 microns) to both the
1700° and 1800°C tests.

Porosity was found on the barrier sides of the interdiffusion zones
in the W-Os, W~Ru, W-Ir, W«Rh, and Ta-Ir couples, indicating that dif-
fusion occurs at an appreciably faster rate from the barrier into the base than in
the opposite direction. Inthe Ta-W and Ta-Re combinations, porosity was
found on the base side of the interdiffusion zone, indicating more rapid diffusion
of the base into the barrier, W-Re is the only combination annealed at 1800°C
in which no porosity formed, thus indicating approximately equal diffusion rates
for the base and the barrier. As shown by comparison of Table 5 with Table 4,
the observations of porosity described above for the 1800° anneal are in agreement
with those made on combinations annealed at 1700°C,

Because of increased facility in using the microindentation technique
by the time the diffusion-couples annealed at 1800° were evaluated, the actual
measured extents of interdiffusion are listed in Table 5, even though all of them
with the exception of W-Rh, are below 50 microns, which was considered the
lower limit of reliability for most of the previous tests (at 1700°C). All the
combinations evaluated at 1800°C satisfy the criterion of 60 microns maximum
extent of interdiffusion, which they also did at 1700°C, The extents of interdif-
fusion increase in the order W-Os, W«Re, W-Ir, W-Ru, and W-Rh f{or
W-base combinations, and in the order Ta-W , Ta-=Re, and Ta-Ru for the
Ta-base combinations. For both Ta and W base metals, the extent of interdif-
fusion appears to increase roughly in the order of decreasing barrier melting
point,

6. Correlation between Interdiffusion and Base~-Barrier Phase
Relations

For most of the combinations evaluated at a diffusion-annealing
temperature of 1700°C, as summarized in Table 4, qualitative relationships
exist between the interdiffusion behavior and the binary phase relations. There
is a tendency for the extent of interdiffusion to decrease with increasing melting
point of either the barrier metal or the solidus temperature of the alloy composi-
tion having the lowest melting point (e.g., a eutectic temperature). The correla-
tion appears to be better with the alloy solidus temperature than with the barrier
melting point. All the combinations with solidus temperatures above 2100°C
exhibit relatively little interdiffusion, 60 microns or less, For combinations
with solidus temperatures up to 2100°C, however, the interdiffusion varies from
50 microns or less for the W-V, Mo-~V, and Ta-~Ru combinations to 630
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microns for both the Mo-Hf and Ta~Hf combinations, annealed for four hours.
The wide variation does not appear to be related to any obvious characteristic
of the alloy systems, such as melting point, solid solubilities, or intermediate
phases. Even within the restricted groups of combinations containing Hf, Cr,
or V, no systematic relationships were found.

For combinations exhibiting restricted interdiffusion, the limited
resolution of the microindentation technique initially made it difficult to compare
the relative extents of interdiffusion in couples if they were 50 microns or less,
As work progressed, however, more competence with the microindentation tech-
nique was gained. Partly as a result, a quantitative relationship between inter-
diffusion and melting point became evident for a restricted group of promising
combinations, as described below.

The extent of interdiffusion is plotted against the minimum alloy solidus
temperature in Fig. 52 for several combinations for which the microindentation
data is considered reliable. The extent of interdiffusion after annealing for three
hours at 1800°C appears to decrease progressively with increasing temperature
for coinbinations between W and such Pt-group metals as, Rh, Ru, Ir, and Os.
As shown in Fig, 52, several other combinations appear to follow similar re-
lationships although the data are not as complete. Data were plotted for Ta-Ru
and Ta-Os after diffusion-annealing for [our hours at 1700°C, since they were
not available for three hours at 1800°. Within a reasonable experimental scatter,
the Ta-Ru, Ta-Ir, and Ta-Os combinations appear to follow the same curve as
the W-base combinations,

7. Interdiffusion in Barrier-Coating Combinations

Inaddition to the selection of Re for study of interdiffusion with alloy
base metals, both Re and Ir barrier metals were chosen for interdiffusion
studies with the oxidation resistant metal, Cr. Interdiffusion measurements of
combinations of Cr with other promising barrier metals, such as W, Ta, and
Mo, were already available from previous base-barrier studies. The results of
interdiffusion measurements on Re-Cr and Ir-Cr couples annealed for one hour
at 1700°C are illustrated in Figs. 46 and 47 and summarized in Table 6, The
total interdiffusion zones varied from a minimum of 105 microns (Re-Cr) to over
360 microns (Ta~-Cr). Thus, the extents of interdiffusion between the base metals
Ta, Mo, W, and the Cr coating metal are higher than those between the best
barrier, Re, and the Cr coating.

Consideration should be given to the effect of the barrier metal on the
oxidation properties of the coating, as well as on the total extent of interdiffusion.
Of the 5 barrier metals for which jnterdiffusion data with Cr are available, only
Ir exhibits resistance to oxidation(24), Consequently, much more interdiffusion
between Ir and Cr could be tolerated than between Cr and any of the other 4 bar-
rier nietalc. On the other hand, although Re possesses poor oxidation resis-
tance at high temperatures(&‘l), it nevertheless exhibits the least extent of inter-
diffusion with Cr. Thus, Ir and Re can be tentatively selected as the most
promising of the 5 barrier metals screened for interactions with Cr.

- 19 -




Interdiffusion was also studied in combinations of the oxidation~
resistant metal Rh with Re and Ir barrier metals, Since W was also selected
as a promising barrier metal for the base metals Mo, Ta, and Cb, W=<Rh
was considered as a barrier-coating combination,

Table 6 shows that interdiffusion in the barrier-coating combinations
increases in the order Ir-Rh, W=~Rh, Re=~Rh., Fig. 48 shows that a substantial
amount of porosity formed in the Re-Rh combination. The relatively poor charac~
teristics of the Re~Rh barrier~coating combination tends to offset the good per=
formance of the W~Re base-barrier combination in comparing the potential ef=
fectiveness of Re with Ir as a barrier metal for W, However, the use of a
duplex barrier layer of Re and Ir may offer a chance of combining the advan-
tages of both barrier metals for a specific application.

8. Interdiffusion in Three=Layer, Mo~Barrier-Cr Combinations

Results of interdiffusion measurements carried out on three=layer
couples after annealing for one hour at 1700°C are illustrated in Figs, 50 and 51
and summarized in Table 6. Diffusion barriers consisting of 38 micron thick
wafers of either Ir or Re were used in each case, sandwiched between thick
wafers of Mo and Cr. Inthe same clamp, a 2-«layer Mo-Cr couple (Fig, 20)
was also annealed for purposes of comparison. In each case, the over=-all extent
of interdiffusion was measured from the Mo to the Cr, through the barrier
layer,

Despite the additional distance introduced by the presence of the un=
consumed barrier layer (about 25 microns), the over=all interdiffusion was re=-
duced from 190 to 145 microns by the presence of the Re barrier, a reduction
of about 25%. If the Re is considered as an integral part of the base, the extent
of base~coating interdiffusion (between the Re and the Cr) is 105 microns,
which constitutes a reduction of 45% from that in the Mo-Cr couple.

In the case of the NMo=Ir-Cr combination, the total extent of inter-
diffusion from the Mo to the Cr (through the Ir barrier) is about the same as
that in the Mo~Cr combination, principally because of extensive interdiffusion
between the Ir and the Cr., If the viewpoint is adopted that the Ir is an inte-
gral part of the coating, the three-layer couple can be considered equivalent to
a two-layer couple consisting of a Mo base and a duplex coating (Ir+Cr). On
this basis, the extent of interdiffusion may be considered as that between the Mo
and the Ir. Since this interdiffusion zone was measured as 50 microns after
1 hour at 1700°C, the presence of the Ir interdiffusion barrier resulted in a re-
duction of about 75% compared to the Mo-Cr combination,

Thus, depending on the viewpoint adopted in estimating the extent
of interdiffusion, the presence of a Re barrier layer results in a reduction of
25 to 45% in the extent of interdiffusion between Mo and Cr, whereas an Ir
barrier layer results in a reduction of 0 to 75%.

9, Selection of Optimum Barrier Metals

In order to distinguish the relative merits of the 20 promising com-
binations more closely, the following factors were considered:
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